Search results

1 – 5 of 5
Article
Publication date: 19 May 2023

Gu-Hong Lin, Cheng-An Chuang, Cheng Ling Tan, Sook Fern Yeo and Fan-Yi Wu

Refractory materials are now used in all major industries that demand high-temperature resistance, including petrochemicals, steel, cement and aviation. Businesses must decrease…

Abstract

Purpose

Refractory materials are now used in all major industries that demand high-temperature resistance, including petrochemicals, steel, cement and aviation. Businesses must decrease operating costs, enhance product technology, sell well and manage corporate risks in decision-making, notably supplier selection, to be more competitive. The study aims to determine the key criteria and factors of supplier selection and to evaluate the importance of the key factor of the supplier selection criteria for the refractory materials manufacturers in Taiwan.

Design/methodology/approach

Analytical hierarchy process (AHP) is used to rank these factors for the decision maker. The AHP method is suitable for verifying refractory supplier selection criteria and providing references. The weighted loss scores for each supplier are then determined using the relative importance as the weights. Supplier selection criteria are ranked using their aggregate weighted loss scores. The provider with the lowest loss score should be chosen.

Findings

Product quality is the most significant of the five criteria: product quality, production technology, logistics capacity, service capability and supplier background. Professionalism is the most significant aspect of product quality, whereas equipment and capacity are vital in manufacturing techniques. The studies also show that the delivery rate is essential for logistics and service capabilities.

Practical implications

This research has important implications for refractory suppliers in promptly fine-tuning the production and service to enhance customer satisfaction, which is key to business sustainability.

Originality/value

The application of an AHP technique to a real-world industrial issue is what makes this research unique. This research addressed one of the most critical topics in supply chain operations by offering better judgement for supplier selection via the use of suitable quantitative methodologies.

Details

Industrial Management & Data Systems, vol. 123 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 9 August 2019

Jiaxing Cai, Xuequn Cheng, Baijie Zhao, Linheng Chen, Yi Fan, Qinqin Dai, Hongchi Ma and Xiaogang Li

The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment.

Abstract

Purpose

The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment.

Design/methodology/approach

The corrosion behaviour of X65 pipeline steel with different types of oxide scale was analysed using the natural environment exposure corrosion test, scanning electron microscopy analysis, electrochemical corrosion polarization curve test and other methods in a warehouse environment.

Findings

The results of this research show that one type of oxide scale, which is rough, has an uneven microstructure, and exhibits weak adhesion to the matrix, does not protect the substrate from corrosion. Conversely, the uniform, dense oxide scale, which exhibits strong adhesion to the matrix, provides effective protection to the steel. However, as the corrosion develops, the corrosion rate of the substrate tends to accelerate, especially when the structure of the oxide scale is damaged to a certain extent.

Originality/value

The corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment has been proposed.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 October 2022

Shi Zhou, Jia Zhao, Yi Shan Shi, Yi Fan Wang and Shun Qi Mei

In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting…

Abstract

Purpose

In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting huge economic losses to enterprises. Thus, automatic fabric defect detection systems have become an important development direction. Herein, the most common defects in the fabric production process, like ribbon yarn, broken yarn, cotton ball, holes, yarn shedding and stains, are detected. Current fabric defect detection systems afford low detection accuracy and a high missed detection rate for small target fabric defects. Therefore, this study proposes deep learning technology for automatically detecting fabric defects by improving the YOLOv5s target detection algorithm. The improved algorithm is termed YOLOv5s-4SCK, which can effectively detect fabric defects. This study aims to discuss the aforementioned issues.

Design/methodology/approach

Specifically, based on the YOLOv5s algorithm, first, the structure of YOLOv5s is modified to add a small target detection layer, fully utilize deep and shallow features and reduce the missed detection rate of small target fabric defects. Second, the integration of CARAFE upsampling enables the effective retention of feature information and maintenance of a certain computational efficiency, thereby improving the detection accuracy. Finally, the K-Means++ clustering algorithm is used to analyze the position of the center point of the prior box to better obtain the anchor box and improve the average accuracy and evaluation index of detection.

Findings

The research results show that the YOLOv5s-4SCK algorithm increases the accuracy by 4.1% and the detection speed by 2 f.s-1 compared to the original YOLOv5s algorithm, and it effectively improves the original YOLOv5s problem of high missed detection rate of small targets.

Research limitations/implications

The YOLOv5s-4SCK proposed in this paper can effectively reduce the missed detection rate of fabric defects, improve the detection efficiency and has certain industrial value.

Practical implications

The proposed algorithm can quickly identify fabric defects, effectively improving the detection rate. In the future, the proposed algorithm will be applied in the actual industry.

Social implications

Automatic fabric defect detection reduces the manpower of inspectors, and the proposed YOLOv5s-4SCK algorithm is also suitable for other recognition fields.

Originality/value

The proposed YOLOv5s-4SCK algorithm has been tested using real cloth to ensure its accuracy, and its performance is better than the original YOLOv5s algorithm.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 November 2021

Liancheng Xiu, Zhiye Du, Yu Tian, Jingxuan He, Hongwei Cai and Fan Yi

The purpose of this paper is to develop a numerical simulation method based on the transient upstream finite element method (FEM) and Schottky emission theory to reveal the…

Abstract

Purpose

The purpose of this paper is to develop a numerical simulation method based on the transient upstream finite element method (FEM) and Schottky emission theory to reveal the distribution characteristics of space charge in oil-paper insulation.

Design/methodology/approach

The main insulation medium of the converter transformer in high voltage direct current transmission is oil-paper insulation. However, the influence of space charge is difficult to be fully considered in the insulation design and simulation of converter transformers. To reveal the influence characteristics of the space charge, this paper proposes a numerical simulation method based on Schottky emission theory and the transient upstream FEM. This method considers the influence of factors, such as carrier mobility, carrier recombination coefficient, trap capture coefficient and diffusion coefficient on the basis of multi-physics field coupling calculation of the electric field and fluid field.

Findings

A numerical simulation method considering multiple charge states is proposed for the space charge problem in oil-paper insulation. Meanwhile, a space charge measurement platform based on the electrostatic capacitance probe method for oil-paper insulation structure is built, and the effectiveness and accuracy of the numerical simulation method is verified.

Originality/value

A variety of models are calculated and analyzed by the numerical simulation method in this paper, and the distribution characteristics of the space charge and total electric field in oil-paper insulation medium with single-layer, polarity reversal of plate voltage and double-layer are obtained. The research results of this paper have the guiding significance for the engineering application of oil-paper insulation and the optimal design of converter transformer insulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Yu-Cheng Chou, Yi-Hua Fan, Madoka Nakajima and Yi-Lin Liao

The purpose of this paper is to present the use of artificial immune systems (AISs) to solve constrained design optimization problems for active magnetic bearings (AMBs).

148

Abstract

Purpose

The purpose of this paper is to present the use of artificial immune systems (AISs) to solve constrained design optimization problems for active magnetic bearings (AMBs).

Design/methodology/approach

This research applies the AIS approach, more specifically, a representative clonal selection-based AIS called CLONALG, to the single-objective structural design optimization of AMBs. In addition, when compared with a genetic algorithm (GA) developed in the previous work, the CLONALG fails to produce best solutions when a nearly zero feasible ratio occurs in an AMB design problem. Therefore, an AIS called ARISCO (AIS for constrained optimization) is proposed to address the above issue.

Findings

A total of six AMB design cases are solved by the GA, CLONALG, and ARISCO. Based on the simulation results, in terms of solution quality, the ARISCO is shown to have better overall performance than the CLONALG and GA. In particular, when solving a problem with a nearly zero feasible ratio, the ARISCO and GA perform equally and both outperform the CLONALG.

Originality/value

In summary, the contributions of this paper include: this research applies the AIS approach, more precisely, the CLONALG, to the single-objective structural design optimization of AMBs; the ARISCO overall produces better AMB designs than the CLONALG and a GA developed in the previous work; in situations where a nearly zero feasible ratio occurs, the ARISCO and GA perform equally, and they both outperform the CLONALG.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5